

Welcome to the Library Route Finder Documentation!

The Library Route Finder is a web-based tool to assist in finding items in
Preus Library at Luther College. The application is composed of a React-based
frontend, as well as an API-based backend.

Check out the For Developers section for technical information about the project,
and the API section for information about the API provided by the backend.
For contributing and community guidelines, please see Contributing.

This project was developed as a Senior Project for the
Luther College Computer Science department#1.

The stated purpose of this course is to familiarize students with the process of
developing a software project from conception through development and testing and
to deployment of a final product. In that spirit, our group aspires to use our
technical and organizational skills to create a web-based application which assists
users in locating books within a library, providing a visual map and route showing
both item locations and an efficient route to those items.

Contributors:

	Firdavs Atabaev

	Alex Dikelsky

	Isaac List

	For Developers
	Installation: Development Environment
	General: Cloning and Setting Up the Node.js Environment

	Components
	Frontend

	Backend

	Testing
	Frontend

	Backend

	API
	Routes
	Books

	Search

	Remove

	Database Interaction

	Database
	Technologies
	PosgreSQL

	Node-Postgres

	Database Structure
	SQL Configuration

	Contributing
	Filing Issues
	Create a new issue

	Contributing Code
	Getting Set Up

	Pull Request

	Code Review
	Code Review Procedure

	Code Review Etiquette

Footnotes

	#1

	https://www.luther.edu/computer-science/major/

For Developers

Installation: Development Environment

The development environment and setup for each component is described in reasonable
detail in the relevant repository’s README file. The documentation is reproduced below:

General: Cloning and Setting Up the Node.js Environment

Both the Frontend and Backend utilize Node.js as a platform, the latter also using React
as its primary framework. The process for cloning the repository and installing Node
dependencies is the same between both components:

Cloning the Project:

To contribute to the project, it is expected that you first create a fork of the relevant
repository, clone that repository, perform your work, and use the Pull Request mechanism
to contribute to the main repository. Github has easy-to-follow documentation on this
process available here:#1.

Installing Node dependencies

To run the project component(s) locally on your machine, you must first install the
NPM packages upon which the component(s) depend. This must be done for each component
which has its own repository. First, ensure that Node and NPM are installed (it is
recommended using NVM, the Node Version Manager). Then, run npm install in the root
of the repository’s directory. This will install the packages recorded in
package.json as dependencies.

To run the project locally, enter npm start.

Components

Frontend

The Frontend utilizes React as its main framework, and as such must be built before
deployment. This build may be performed by running npm build in the project’s root
directory. This will produce a /build directory from which Netlify deploys. This
directory contains the transpiled JavaScript, HTML, and CSS which is created from
the main project code.

Backend

The Backend uses Express.js as its main framework, and unlike the Frontend, does not
need to be “compiled” in the same sense before deployment. However, the main “App”
component is written in TypeScript, which does need to be compiled before deployment.
This process is completed automatically when the npm start script is evoked,a process
which is also completed by Heroku when the project is deployed.

Testing

Frontend

Once testing is implemented later in the semester, a script will be defined which
can then be invoked with npm test.

Backend

The testing script for the backend is defined in the package.json file as being invoked
by npm test. This runs the test file defined at /test/test.js. This file uses the
Mocha testing library#2 to test the backend’s routes and return
values. This script is run each time a pull request is merged into the main repository.

The Backend’s API is tested using a set of Postman#3 tests.

Footnotes

	#1

	https://docs.github.com/en/get-started/quickstart/contributing-to-projects

	#2

	https://mochajs.org

	#3

	https://www.postman.com/

API

Routes

The API consists of 3 main routes defined in the backend’s app.ts file:

Books

Located at /api/books, this route accepts GET requests with the query
parameter of “?name=<username>” where <username> is any username present
in the application database.

This route returns the list of books associated with a given username as JSON
in the following format:

{
 "results": [
 {
 "isbn": "9781611321456",
 "author": "Author of the Work",
 "title": "Title of the Work",
 "call_no": "AM101.L196",
 "username": "username"
 },
 {
 "isbn": "9781611321456",
 "author": "Author of the Work",
 "title": "Title of the Work",
 "call_no": "AM101.L196",
 "username": "username"
 }
}

Search

Located at /api/search, this route accepts POST requests with the following
header parameters:

	isbn: a valid ISBN-10 or ISBN-13 code

	name: a username present in the application database

Passing a request to this endpoint will result in the requested item being added to
the application database. The following JSON will be returned in the case of either:

Success

{"status": "success", "book": item} where item is the book information.

Failure – Database Issue

{"status": "failure", "error": data} where data is the response returned from the
OCLC access module.

Failure – Bad Input

{"status": "failure", "error": "Invalid ISBN"}

Remove

Located at /api/remove, this route accepts POST requests with the following
header parameter:

	name: a username present in the application database

Passing a request to this endpoint will result in all items associated with that
username being removed from the database, with the end-user result of clearing the
subject user’s list of books. It will return {"Status": "Success"} if the removal
was successful, or {"Status": "Failure", "Error": err} in the case of an
internal error, where err is any error reported by the database.

Database Interaction

Use of the API requires that the PostgreSQL database connection be active. The Backend
will fail to launch if the database connection is configured incorrectly. Refer to
Database for more information.

Footnotes

Database

Technologies

PosgreSQL

This application uses the PosgreSQL#1 database in
its implementation. As currently deployed, the project uses the database option
provided by Heroku’s platform.

Node-Postgres

The backend is built using the Node-Postgres#2
object relational mapping module to interact with the provided database.

Database Structure

The database uses a single table in the following configuration to store all books
or other materials added to users’ lists:

Columns:

	isbn: 10 or 13-digit string

	author: up to 64 character string of author name

	title: up to 256 character string of item title

	call_no: up to 48 character string of item call_no

	username: up to 64 character string of item’s associated user

Primary Key:

The table’s primary key is the combination of the values isbn and username.

SQL Configuration

The following SQL command will create the necessary table for the application.

create table booklist IF NOT EXISTS (
 isbn VARCHAR(16),
 author VARCHAR(64),
 title VARCHAR(256),
 call_no VARCHAR(48),
 username VARCHAR(64),
 PRIMARY KEY (isbn, username)
);

Footnotes

	#1

	https://www.postgresql.org/

	#2

	https://node-postgres.com/

Contributing

Filing Issues

Create a new issue

If you spot a problem with the component, search if an issue already exists#1.
If the issue you’ve encountered has not yet been documented, you can create a new
issue using the appropriate issue template on GitHub.

Contributing Code

Getting Set Up

Cloning the Project:
To contribute to the project, it is expected that you first create a fork of the repository and clone that repository to your machine.
Github has easy-to-follow documentation on this process#2.

Installing Node dependencies
To run the project locally on your machine, you must first install the NPM packages upon which the project depends. First, ensure that Node and NPM
are installed (we recommend using NVM, the Node Version Manager#3). Then, run npm install in the root of the repository’s
directory. This will install the packages recorded in package.json as dependencies.

To run either component the project locally, enter npm start.

Pull Request

When you’re finished with the changes, create a pull request, also known as a PR.

	Push all local commits to your fork of the repository.

	On your fork’s main GitHub page, click “Contribute” and then “Open Pull Request”.

	Give your PR a title, and briefly describe the changes you have made. Keep each pull request limited in its scope, so that changes are more modular.

	If necessary, or if you would like help with your work, request a Reviewer (see Code Review below).

Code Review

Code Review Procedure

Consider whether you should request a review of your code from another contributor.
You should request a manual code review if:

	One or more unit tests are failing

	The PR addresses a long-standing bug or introduces new behavior

	The code uses constructs unfamiliar to the other contributors

Code Review Etiquette

CSS Tricks has a well-written guide#4
to maintaining respectful etiquette in a Code Review process. The article is worth
a read-through, but in summary:

	Remove the person: use “we” instead of “I” and “you” to reflect that reviewing code is a collaborative activity.

	Keep conversation focused on technical problems and solutions. Avoid emotional responses, and instead use clarifying questions to direct discussion.

	Review the code, not the author.

	Programming is as creative as it is technical, and each person approaches it differently.

	Where possible, seek to correct mistakes by teaching, rather than dismissal.

	If there is a conflict about coding style, refer to the project Style Guide.

Footnotes

	#1

	https://github.com/isaac-list/classify/issues/

	#2

	https://docs.github.com/en/get-started/quickstart/contributing-to-projects

	#3

	https://github.com/nvm-sh/nvm

	#4

	https://css-tricks.com/code-review-etiquette/#aa-quick-tips-for-improving-code-review-etiquette

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to the Library Route Finder Documentation!

 		
 For Developers

 		
 Installation: Development Environment

 		
 General: Cloning and Setting Up the Node.js Environment

 		
 Components

 		
 Frontend

 		
 Backend

 		
 Testing

 		
 Frontend

 		
 Backend

 		
 API

 		
 Routes

 		
 Books

 		
 Search

 		
 Remove

 		
 Database Interaction

 		
 Database

 		
 Technologies

 		
 PosgreSQL

 		
 Node-Postgres

 		
 Database Structure

 		
 SQL Configuration

 		
 Contributing

 		
 Filing Issues

 		
 Create a new issue

 		
 Contributing Code

 		
 Getting Set Up

 		
 Pull Request

 		
 Code Review

 		
 Code Review Procedure

 		
 Code Review Etiquette

_static/plus.png

_static/file.png

_static/minus.png

